The SsrA-SmpB ribosome rescue system is important for growth of Bacillus subtilis at low and high temperatures.
نویسندگان
چکیده
Bacillus subtilis has multiple stress response systems whose integrated action promotes growth and survival under unfavorable conditions. Here we address the function and transcriptional organization of a five-gene cluster containing ssrA, previously known to be important for growth at high temperature because of the role of its tmRNA product in rescuing stalled ribosomes. Reverse transcription-PCR experiments detected a single message for the secG-yvaK-rnr-smpB-ssrA cluster, suggesting that it constitutes an operon. However, rapid amplification of cDNA ends-PCR and lacZ fusion experiments indicated that operon transcription is complex, with at least five promoters controlling different segments of the cluster. One sigma(A)-like promoter preceded secG (P(1)), and internal sigma(A)-like promoters were found in both the rnr-smpB (P(2)) and smpB-ssrA intervals (P(3) and P(HS)). Another internal promoter lay in the secG-yvaK intercistronic region, and this activity (P(B)) was dependent on the general stress factor sigma(B). Null mutations in the four genes downstream from P(B) were tested for their effects on growth. Loss of yvaK (carboxylesterase E) or rnr (RNase R) caused no obvious phenotype. By contrast, smpB was required for growth at high temperature (52 degrees C), as anticipated if its product (a small ribosomal binding protein) is essential for tmRNA (ssrA) function. Notably, smpB and ssrA were also required for growth at low temperature (16 degrees C), a phenotype not previously associated with tmRNA activity. These results extend the known high-temperature role of ssrA and indicate that the ribosome rescue system is important at both extremes of the B. subtilis temperature range.
منابع مشابه
SsrA-mediated tagging in Bacillus subtilis.
A general mechanism in bacteria to rescue stalled ribosomes involves a stable RNA encoded by the ssrA gene. This RNA, termed tmRNA, encodes a proteolytic peptide tag which is cotranslationally added to truncated polypeptides, thereby targeting them for rapid proteolysis. To study this ssrA-mediated mechanism in Bacillus subtilis, a bipartite detection system was constructed that was composed of...
متن کاملA-Site mRNA Cleavage Is Not Required for tmRNA-Mediated ssrA-Peptide Tagging
In Escherichia coli, prolonged translational arrest allows mRNA degradation into the A site of stalled ribosomes. The enzyme that cleaves the A-site codon is not known, but its activity requires RNase II to degrade mRNA downstream of the ribosome. This A-site mRNA cleavage process is thought to function in translation quality control because stalled ribosomes are recycled from A-site truncated ...
متن کاملThe fate of extracellular proteins tagged by the SsrA system of Bacillus subtilis.
In bacteria, SsrA, a highly conserved RNA molecule, functions in a mechanism meant to rescue stalled ribosomes. In this process, a peptide tag encoded by SsrA is cotranslationally added to truncated polypeptides, thereby targeting these molecules for proteolytic degradation, at least when they stay inside the cell. This study examined the fate of two extracellular proteins that were tagged by t...
متن کاملProtein factors associated with the SsrA.SmpB tagging and ribosome rescue complex.
SsrA RNA acts as a tRNA and mRNA to modify proteins whose synthesis on ribosomes has stalled. Such proteins are marked for degradation by addition of peptide tags to their C termini in a reaction mediated by SsrA RNA and SmpB, a specific SsrA-RNA binding protein. Evidence is presented here for the existence of a larger ribonucleoprotein complex that contains ribosomal protein S1, phosphoribosyl...
متن کاملTrans-Translation in Helicobacter pylori: Essentiality of Ribosome Rescue and Requirement of Protein Tagging for Stress Resistance and Competence
BACKGROUND The ubiquitous bacterial trans-translation is one of the most studied quality control mechanisms. Trans-translation requires two specific factors, a small RNA SsrA (tmRNA) and a protein co-factor SmpB, to promote the release of ribosomes stalled on defective mRNAs and to add a specific tag sequence to aberrant polypeptides to direct them to degradation pathways. Helicobacter pylori i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 189 10 شماره
صفحات -
تاریخ انتشار 2007